

WEEKLY TEST MEDICAL PLUS - 03 TEST - 22 RAJPUR SOLUTION Date 05-01-2020

[PHYSICS]

1. Potential difference between plates A and B

V = PD in air + PD in medium

$$V = \frac{\sigma}{\varepsilon_0} (d - t) + \frac{\sigma}{K\varepsilon_0} t$$

$$V = \frac{\sigma}{\varepsilon_0} \left[d - t + \frac{t}{K} \right]$$

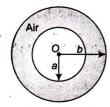
$$= \frac{Q}{A\varepsilon_0} \left(d - t + \frac{t}{K} \right)$$

$$C = \frac{Q}{V} = \frac{Q}{\frac{Q}{A\varepsilon_0} \left(d - t + \frac{t}{K} \right)}$$

$$= \frac{\varepsilon_0 A}{d - t + \frac{t}{K}}$$

$$= \frac{\varepsilon_0 A}{d - t \left(1 - \frac{1}{K} \right)}$$

2. According to question,


Capacity of spherical condenser = Capacity of parallel plate capacitor

capacitor
$$4\pi\varepsilon_0 r = \frac{\varepsilon_0 A}{d}$$

$$d = \frac{A}{4\pi r} = \frac{\pi R^2}{4\pi r}$$

$$= \frac{\pi (20 \times 10^{-3})^2}{4\pi \times 1} = 0.1 \text{ mm}$$

3. . Capacity of spherical condenser when outer sphere is earthed

$$C_1 = 4\pi\varepsilon_0 \cdot \frac{ab}{b-a}$$

Capacity of spherical condenser when inner sphere is earthed

$$C_2 = 4\pi\varepsilon_0 b + \frac{4\pi\varepsilon_0 ab}{b-a}$$

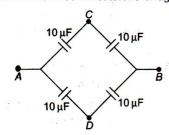
- : Difference in their capacity = $C_2 C_1 = 4\pi\epsilon_0 b$
- 4. Three capacitors are in series their resultant capacity is

$$\frac{1}{C_s} = \frac{1}{\left(\frac{\varepsilon_0 K_1 A}{d_1}\right)} + \frac{1}{\left(\frac{\varepsilon_0 K_2 A}{d_2}\right)} + \frac{1}{\left(\frac{\varepsilon_0 K_3 A}{d_3}\right)}$$

or
$$\frac{1}{C_s} = \frac{d_1}{\varepsilon_0 K_1 A} + \frac{d_2}{\varepsilon_0 K_2 A} + \frac{d_3}{\varepsilon_0 K_3 A}$$

$$\frac{1}{C_s} = \frac{1}{\varepsilon_0 A} \left(\frac{d_1}{K_1} + \frac{d_2}{K_2} + \frac{d_3}{K_3} \right)$$

$$\frac{1}{C_s} = \frac{1}{\varepsilon_0 A} \left(\frac{d_1}{K_1} + \frac{d_2}{K_2} + \frac{d_3}{K_3} \right)$$


$$\therefore C_s = \frac{\varepsilon_0 A}{\left(\frac{d_1}{K_1} + \frac{d_2}{K_2} + \frac{d_3}{K_3} \right)}$$

5.
$$\frac{\varepsilon_0 A}{d} = \frac{\varepsilon_0 A}{(d + \Delta d) - t + \frac{t}{K}} \text{ or } K = \frac{t}{t - \Delta d}$$

6. The given figure is equivalent to two identical capacitors in parallel combination

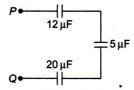
$$C = \frac{\varepsilon_0 A}{d} + \frac{\varepsilon_0 A}{d} = \frac{2\varepsilon_0 A}{d}$$

Given circuit is balanced Wheatstone bridge circuit. 7.

Their is no current in branch CD. So, equivalent capacitance between AB,

$$C_{AB} = 5 + 5 = 10 \,\mu\text{F}$$

8. When capacitors are connected in series then,

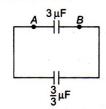

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$
$$= \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$
$$\frac{1}{C_s} = \frac{1}{2} \implies C_s = 2 \,\mu\text{F}$$

When capacitors are joined is parallel, then

$$C_p = 3 + 9 + 18 = 30 \,\mu\text{F}$$

$$\frac{C_s}{C_p} = \frac{2}{30} = \frac{1}{15}$$

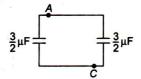
9. In circuit, condenser of capacity $2 \mu F$ and $3 \mu F$ are in parallel. Their resultant capacity is $5 \mu F$.

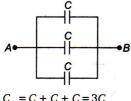


Now, capacitor 12 $\mu F,\,5\,\mu F$ and 20 μF are in series. So, their resultant capacity

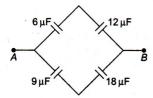
$$\frac{1}{C} = \frac{1}{5} + \frac{1}{20} + \frac{1}{12} = \frac{1}{3}$$

10. Capacitance between A and B


٠.

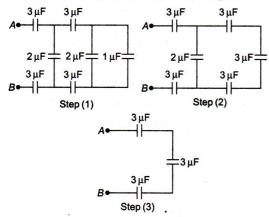

$$C_{AB} = 3 + 1 = 4 \mu F$$

 $C_{AB} = 3 + 1 = 4 \, \mu \mathrm{F}$ Capacitance between A and C


$$C_{AC} = \frac{3}{2} + \frac{3}{2} = 3 \,\mu\text{F}$$

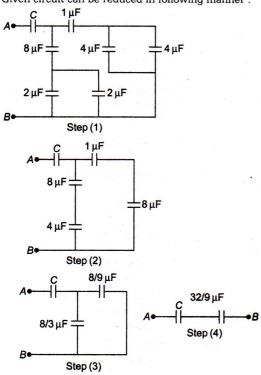
Three capacitors are in parallel. So, their equivalent capacity

12. Given circuit is balanced Wheatstone bridge circuit.



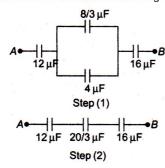
Now capacitor of capacity $6\,\mu F,\,12\,\mu F$ are in series and $9\,\mu F,\,18\,\mu F$ are also in series.

 \therefore Equivalent capacitance between A and B is


$$C_{AB} = 4 + 6 = 10 \,\mu\text{F}$$

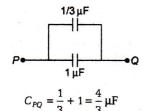
13. The given circuit can be reduced in following manner

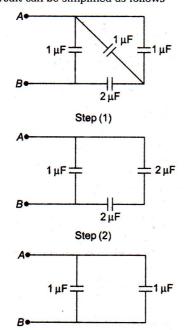
∴ Resultant capacity between A and B i.e., $C_{AB} = 1 \mu F$


14. Given circuit can be reduced in following manner:

So, equivalent capacitance between A and B

$$C_{\text{eq}} = 1 = \frac{\frac{32}{9} \times C}{\frac{32}{9} + C} \quad \therefore \quad C = \frac{32}{23} \, \mu\text{F}$$

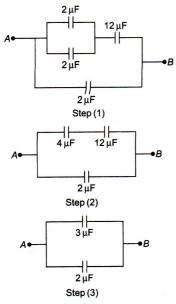

15. Given circuit can be reduced as following.


Hence, equivalent capacitance between A and B

$$\frac{1}{C_{AB}} = \frac{1}{12} + \frac{1}{20/3} + \frac{1}{16}$$
$$C_{AB} = \frac{240}{110} \text{ F}$$

16. Given circuit can be simplified as shown

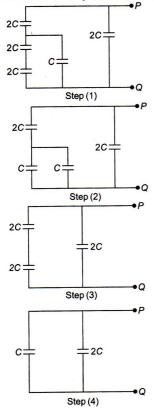
17. Given circuit can be simplified as follows



Step (3)

So, equivalent capacitance between A and B,

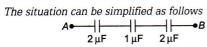
$$C_{AB} = 1 + 1 = 2 \mu F$$


18. Given circuit can be expressed as

So, Net capacitance between AB

$$C_{AB} = 3 + 2 = 5 \,\mu\text{F}$$

19. The given circuit can be simplified in following way.


So, capacity between P and Q

$$C_{PQ} = 2C + C$$
$$= 3C$$

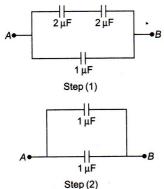
Capacitors C_1 and C_2 are in parallel and, they are in series with C_3 , then equivalent capacity between A and B $C = \frac{C_P \times C_3}{C_P + C_3} = \frac{15 \times 4}{15 + 4} = \frac{60}{19} = 3.2 \, \mu\text{F}$ 20.

$$C = \frac{C_P \times C_3}{C_P + C_2} = \frac{15 \times 4}{15 + 4} = \frac{60}{19} = 3.2 \,\mu\text{F}$$

21.

 \therefore Equivalent capacity between A and B

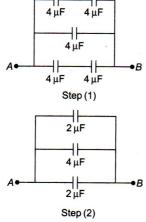
$$C_{AB} = \frac{2}{1+2+1} = \frac{2}{4}$$


$$\therefore C_{AB} = 0.5 \,\mu\text{F}$$

22.

The circuit can be redrawn as
$$A \bullet \qquad | \qquad | \qquad | \qquad | \qquad | \qquad | \Rightarrow B$$

$$3 \, \mu F \qquad 3 \, \mu F \qquad 3 \, \mu F$$

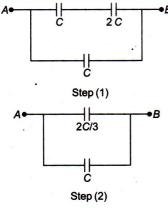

So,
$$C_{AB} = \frac{3}{3} = 1 \,\mu\text{F}$$

23. Given circuit can be redrawn as follows.

So, equivalent capacitance between A and B $C_{AB} = 1 + 1 = 2 \mu F$

Given circuit can be redrawn as 24.

So, equivalent capacitance between A and B,


$$C_{AB} = 2 + 4 + 2 = 8 \,\mu\text{F}$$

Capacitors C_1 and C_2 are in series with C_3 in parallel with them.

Now,
$$C_1 = \frac{K_1 \varepsilon_0 (A/2)}{(d/2)} = \frac{K_1 \varepsilon_0 A}{d}$$

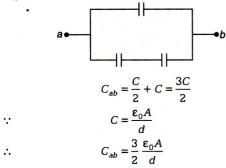
$$C_2 = \frac{K_2 \varepsilon_0 (A/2)}{(d/2)} = \frac{K_2 \varepsilon_0 A}{d}$$
 and
$$C_3 = \frac{K_3 \varepsilon_0 A}{2d}$$

$$C_{\text{equivalent}} = C_3 + \frac{C_1 C_2}{C_1 + C_2}$$

$$= \frac{K_3 \varepsilon_0 A}{2d} + \frac{\left(\frac{K_1 \varepsilon_0 A}{d}\right) \left(\frac{K_2 \varepsilon_0 A}{d}\right)}{\frac{K_1 \varepsilon_0 A}{d} + \frac{K_2 \varepsilon_0 A}{d}}$$

$$= \frac{\varepsilon_0 A}{d} \left(\frac{K_3}{2} + \frac{K_1 K_2}{K_1 + K_2}\right)$$

So, none option is correct.


26. Given circuit can be redrawn as follows.

Equivalent capacitance between A and B
$$C_{AB} = \frac{2C}{3} + C = \frac{5C}{3}$$

27. In the given figure, the metallic plates forms a combination of two capacitors in series with one capacitor in parallel,

Let capacity of each capacitor is C, then, equivalent capacitance between a and b

$$C_s = \frac{C_0}{7}$$

$$C_P = 7C_0$$

$$C_{\rm p} = 490$$

and $C_P = 7C_0$ \therefore $C_P = 49 C_s$ Here, $C_0 =$ capacity of one capacitor.

$$V = \frac{q}{C}$$
 or $V \propto \frac{1}{C}$

V has reduced to $\frac{1}{8}$ th its original value. Therefore, C has increased 8 times.

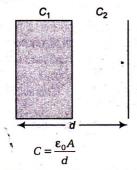
30.

31.

32.

33.

34. Force on one plate due to another is


$$F = QE = Q \times \frac{\rho}{2\varepsilon_0}$$

$$=Q\left[\frac{Q}{2A\varepsilon_0}\right] = \frac{Q^2}{2A\varepsilon_0}$$

35.

36.

37. Initial capacitance

When it is half filled by a dielectric of dielectric constant K, then

$$C_1 = \frac{K\varepsilon_0 A}{d/2}$$

$$=2K\frac{\varepsilon_0 A}{\epsilon_0}$$

and

$$C_1 = \frac{K\varepsilon_0 A}{d/2}$$
$$= 2K \frac{\varepsilon_0 A}{d}$$
$$C_2 = \frac{\varepsilon_0 A}{d/2} = \frac{2\varepsilon_0 A}{d}$$

$$\frac{1}{C'} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{d}{2\varepsilon_0 A} \left(\frac{1}{K} + 1 \right)$$

$$= \frac{d}{2\varepsilon_0 A} \left(\frac{1}{5} + 1\right) = \frac{6}{10} \frac{d}{\varepsilon_0 A}$$

$$C' = \frac{5\varepsilon_0 A}{3d}$$

$$\therefore \qquad C' = \frac{5\varepsilon_0}{3d}$$

$$\frac{5}{2} \frac{\varepsilon_0 A}{\varepsilon_0 A}$$

Hence, increase in capacitance = $\frac{\frac{5}{3}}{\frac{\varepsilon_0 A}{d}} - \frac{\varepsilon_0 A}{\frac{\varepsilon_0 A}{d}} = \frac{2}{3} = 66.6\%$

- 38.
- 39.
- 40.
- 41.
- 42.
- 43.

44.
$$\frac{2C}{3} = 4 \,\mu\text{F}$$
 : $C = 6 \,\mu\text{F}$

45.
$$\frac{C'}{C} = \frac{\varepsilon_0 A/d - t}{\varepsilon_0 A/d} = \frac{d}{d - t} = \frac{d}{d/2} = 2:1$$

[CHEMISTRY]

- 46. (d) Mild oxidizing agents like PCC [Pyridinium chlorochromate] are particularly used for the conversion of $R CH_2OH \rightarrow R CHO$.
- 47. (d)
- 48. (c) $CH_3COC1 \xrightarrow{2H} CH_3CHO + HC1$
- 49.

(b)
$$C \equiv CH \xrightarrow{NaNH_2} \xrightarrow{CH_3CH_2CH_2Br}$$
 $C \equiv C - CH_2CH_2CH_3$
 $HgSO_4 \mid H_2SO_4$

$$\begin{array}{c} O \\ \parallel \\ CH_3C - Cl \xrightarrow{KOH (aq)} CH_3 - C - OH + KCl \\ [SN \ reaction] \end{array}$$

$$\label{eq:ch3} \begin{split} \text{CH}_3 - \text{CH}_2 - \text{Cl} & \xrightarrow{\text{KOH (aq)}} \text{CH}_3 - \text{CH}_2 - \text{OH} \\ & [\text{S}_\text{N}\text{2 reaction}] \end{split}$$

$$\begin{array}{c} \operatorname{Cl} - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{Cl} \xrightarrow{\operatorname{KOH} \, (\operatorname{aq})} \operatorname{CH}_2 - \operatorname{CH}_2 \\ | & | \\ \operatorname{OH} & \operatorname{OH} \end{array}$$

$$\begin{array}{c} [S_{N}2 \text{ reaction}] & O \\ CH_{3}-CH-Cl \xrightarrow{KOH \text{ (aq)}} CH_{3}-CH-OH \xrightarrow{-H_{2}O} CH_{3}-C-H \\ Cl & OH \\ \text{(unstable)} & \text{(acetaldhyde)} \end{array}$$

51.

52. (c)
$$CH_3$$
 CH $COOH$ $COOH$ COO_2Cl_2 CrO_2Cl_2 CrO_2 Cr

- This is Etard's reaction
- 53. (a)
- 54. (d)

55. (a)
$${}_{34}^{43}$$
 ${}_{52}^{5}$ ${}_{61}^{7}$ ${}_{0zonolysis}$ ${}_{3}$ ${}_{1}^{5}$ ${}_{0zonolysis}$ ${}_{3}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{2}^{7}$ ${}_{1}^{7}$ ${}_{1}^{7}$ ${}_{2}^{7}$ ${}_{1}^{7}$ ${}_{2}^{7}$ ${}_{3}^{7}$ ${}_{1}^{7}$ ${}_{2}^{7}$ ${}_{3}^{7}$ ${}_{3}^{7}$ ${}_{1}^{7}$ ${}_{2}^{7}$ ${}_{3}^{7}$ ${}$

56.
$$\begin{array}{c} \text{CH}_3 \\ \text{C}_9\text{H}_{18} + \text{O}_3 & \rightarrow \text{H}_3\text{C} - \text{C} - \text{CHO} + \text{CH}_3\text{CH}_2\text{COCH}_3 \\ & \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$$

On the basis of product formation, it would be alkene

- 57. (c) Reactivity follows the ease with which a nucleophile can attack at carbonyl carbon. Greater the steric hindrance at carbonyl carbon, smaller is the reactivity.
- 58. (c) Reaction of PhMgBr with carbonyl compounds is an example of nucleophilic addition on carbonyl group which increases with the increase in electron-deficiency of carbonyl carbon and less steric hindrance on carbonyl carbon.

Thus acetaldehyde is the most reactive while $C_6H_5COC_6H_5$ least

60. (c)
$$CH_3COCH_3 \xrightarrow{CH_3MgI} (CH_3)_3COH$$
Acetone tert-Butylalcohol

61. (c)
$$CH_3COCH_3 + CH_3MgCl \rightarrow (CH_3)_3C - OMgCl$$

$$\xrightarrow{\text{hydrolysis}} (\text{CH}_3)_3 \text{C} - \text{OH} + \text{Mg(OH)Cl}$$
(Y)

62. (a) Increase in alkyl group, the reactivity decreases.

63.

(d)

- 64. (c) Addition of HCN to carbonyl compounds is an example of nucleophilic addition.
- 65. (a) Acetone forms sodium bisulphate adduct but acetophenone does not. Aromatic ketones do not gives addition product with NaHSO₃.

66. (a)
$$6HCHO + 4NH_3 \rightarrow (CH_2)_6N_4 + 6H_2O$$
Urotropine

67. (c)
$$C_2H_5CHO + 2Cu^{+2} + 5OH^- \rightarrow Cu_2O + 3H_2O$$
Red ppt

$$+C_2H_5COO^-$$

$$CH_3COCH_3 + 2Cu^{+2} + 5OH^- \rightarrow No reaction$$

68. (c)

- 70. **(b)** Wolff–Kishner reduction does not convert >CO to CHOH but converts it to > CH₂.
- 71. D
- 72. (b) Zn(Hg), HCl cannot be used when acid sensitive group like -OH is present, but NH₂NH₂, OH⁻ can be used. (c) and (d) will convert it to alcohol.

73. (c)
$$CH_3CHO + 2Cu^{2+} + OH^- \rightarrow CH_3COOH + Cu_2O^-$$
(Fehling solution) (red)

74. (c)

$$Ph \xrightarrow{O} O O Heat -CO_{2} Ph \xrightarrow{C} CH_{3}$$

$$(G) \times (G) \times (G) \times (G)$$

$$(G) \times (G) \times (G)$$

$$(G) \times (G) \times (G)$$

 $\beta \text{-keto acids undergo decarbonylation by simple heating,} \\ from \quad \text{that} \quad \text{we} \quad \text{get} \quad \text{carbonyl} \quad \text{compound} \quad \text{of} \quad \text{type} \\$

 $CH_3 - C$ - which undergoes iodoform reaction.

0

75. (c)

76. **(b)**
$$CH_3 - C - CH_3 + 3Cl_2 \rightarrow CH_3 - C - CCl_3 + 3HCl$$

- 77. (c) It is an α , β -unsaturated ketone which can be formed in an aldol condensation followed by dehydration.
- 78. (c) Although both CH₃CH₂COCH₃ and (CH₃)₃COOH₃ contain α-hydrogen, yet (CH₃)₃CCOH₃ does not undergo aldol condensation due to steric hindrance.
- 79. Cationic detergents are quaternary ammonium salts of amine with acetates, chlorides or bromides as anion.
- 80. (b)

81. (c)
$$2CH_3CHO \xrightarrow{\text{dil.}} CH_3 - CH - CH_2CHO$$

- 82. (d)
- 83. (c)
- 84.

(b)
$$C_6H_5$$
 — C — CHO \xrightarrow{NaOH} C_6H_5 — C — C — O — H Intramolecular Cannizaro

85.

(b) This is Cannizzaro's reaction: $2C_6H_5CHO + NaOH \rightarrow C_6H_5COONa + C_6H_5CH_2OH$

86.

(b) The compound containing α-H atom does not undergo Cannizzaro's reaction.

$$(a) \ H_3C - C - C - H \\ CH_3 \ O \\ CH_3 - no$$

$$(b) \ ^{\alpha}CH_3 - C - H \\ CH_3 - C - H$$

$$(c) \ \qquad (d) \ H - C - H \\ no \ \alpha_C \ so \ no \ \alpha_H$$

87. -NH₂ is electron donating group but-CN is electron withdrawing group.

(a) Cannizzaro's reaction is given by aldehydes (RCHO) lacking H at α -carbon or lacking α -carbon (as in HCHO). With NaOH, there is formation of acid salt (RCOO⁻) by oxidation and alcohol (RCH₂OH) by reduction.

$$\begin{array}{c|c} Cl \\ 2Cl - C - CHO + NaOH \longrightarrow \\ \hline \\ Cl \\ Cl - C - CONa + Cl - C - CH_2OH \\ \hline \\ Cl \\ Cl \\ (By oxidation) \\ \hline \\ (By reduction 2, 2, 2 \\ trichloroethanol) \end{array}$$

89.

(d) Chlorobenzaldehyde does not contain α -H atom. It is an example of Cannizzaro reaction